## Generic Rank of a Family of Elliptic Curves

Francesca Bianchi, Matthew Bisatt, Julie Desjardins, Daniel Kohen, Carlo Pagano, Soohyun Park

ICTP Trieste, 4th September 2017

## Motivation

## Motivation

## One reason: We didn't want to do the exercises.

## Definitions

## Definition

A family of elliptic curves $\mathcal{E}$ is given by the equation

$$
\mathcal{E}: y^{2}+a_{1}(T) x y+a_{3}(T) y=x^{3}+a_{2}(T) x^{2}+a_{4}(T) x+a_{6}(T)
$$

with $a_{i}(T) \in \mathbb{Z}[T]$.

## Definitions

## Definition

A family of elliptic curves $\mathcal{E}$ is given by the equation

$$
\mathcal{E}: y^{2}+a_{1}(T) x y+a_{3}(T) y=x^{3}+a_{2}(T) x^{2}+a_{4}(T) x+a_{6}(T)
$$

with $a_{i}(T) \in \mathbb{Z}[T]$.
We denote by $\mathcal{E}_{t}$ the curve given by this equation when $T$ is replaced by $t \in \mathbb{Q}$. We call $\mathcal{E}_{t}$ the fibre at $t$ and is an elliptic curve except for finitely many exceptions.

## Definitions

## Definition

A family of elliptic curves $\mathcal{E}$ is given by the equation

$$
\mathcal{E}: y^{2}+a_{1}(T) x y+a_{3}(T) y=x^{3}+a_{2}(T) x^{2}+a_{4}(T) x+a_{6}(T)
$$

with $a_{i}(T) \in \mathbb{Z}[T]$.
We denote by $\mathcal{E}_{t}$ the curve given by this equation when $T$ is replaced by $t \in \mathbb{Q}$. We call $\mathcal{E}_{t}$ the fibre at $t$ and is an elliptic curve except for finitely many exceptions.

- Will assume $a_{1}=a_{3}=0$ with $\operatorname{deg} a_{i} \leq 2$ for $i$ even.


## DEFINITIONS (CONT’D)

## Definition

The generic rank of $\mathcal{E}$ (denoted by $\operatorname{rk}(\mathcal{E}(\mathbb{Q}(T))))$ is the rank of $\mathcal{E}$ as an elliptic curve over $\mathbb{Q}(T)$.

## Definitions (CONT'D)

## Definition

The generic rank of $\mathcal{E}$ (denoted by $\operatorname{rk}(\mathcal{E}(\mathbb{Q}(T))))$ is the rank of $\mathcal{E}$ as an elliptic curve over $\mathbb{Q}(T)$.

## THEOREM (SiLVERMAN)

We have $\operatorname{rk}\left(\mathcal{E}_{t}\right) \geq \operatorname{rk}(\mathcal{E}(\mathbb{Q}(T)))$ for all but finitely many $t \in \mathbb{Q}$.

## Motivations

- Over an algebraically closed field $k$, one can find the generic rank explicitly from the reduction type (Oguiso-Shioda).


## Motivations

- Over an algebraically closed field $k$, one can find the generic rank explicitly from the reduction type (Oguiso-Shioda). Q1: What if $k$ is not algebraically closed (e.g. $k=\mathbb{Q}$ )?


## Motivations

- Over an algebraically closed field $k$, one can find the generic rank explicitly from the reduction type (Oguiso-Shioda). Q1: What if $k$ is not algebraically closed (e.g. $k=\mathbb{Q}$ )?
- Q2: Is there an elliptic surface $\mathcal{E}$ over $\mathbb{Q}$ with generic rank 0 such that every fibre $\mathcal{E}_{t}$ has positive rank? (Cassels)


## Motivations

- Over an algebraically closed field $k$, one can find the generic rank explicitly from the reduction type (Oguiso-Shioda).
Q1: What if $k$ is not algebraically closed (e.g. $k=\mathbb{Q}$ )?
- Q2: Is there an elliptic surface $\mathcal{E}$ over $\mathbb{Q}$ with generic rank 0 such that every fibre $\mathcal{E}_{t}$ has positive rank? (Cassels)
- When $K$ is a number field, it is known that

$$
\#\left\{t \in \mathbb{P}^{1} \mid \operatorname{rg}\left(\mathcal{E}_{t}\right) \neq 0\right\}=\infty \Leftrightarrow \mathcal{E}(K) \text { is dense }
$$

## Motivations

- Over an algebraically closed field $k$, one can find the generic rank explicitly from the reduction type (Oguiso-Shioda).
Q1: What if $k$ is not algebraically closed (e.g. $k=\mathbb{Q}$ )?
- Q2: Is there an elliptic surface $\mathcal{E}$ over $\mathbb{Q}$ with generic rank 0 such that every fibre $\mathcal{E}_{t}$ has positive rank? (Cassels)
- When $K$ is a number field, it is known that

$$
\#\left\{t \in \mathbb{P}^{1} \mid r g\left(\mathcal{E}_{t}\right) \neq 0\right\}=\infty \Leftrightarrow \mathcal{E}(K) \text { is dense }
$$

Q3: Suppose there is no elliptic curve $E$ over $\mathbb{Q}$ such that $\mathcal{E} \cong E \times \mathbb{P}^{1}$.
Is $\mathcal{E}(\mathbb{Q})$ Zariski dense?

## Computing the generic rank

## Conjecture (Nagao)

The rank of $\mathcal{E}$ over $\mathbb{Q}(T)$ is

$$
r_{\mathcal{E}}=\lim _{X \rightarrow \infty} \frac{1}{X} \sum_{p \leq X}-A_{\mathcal{E}}(p) \log p
$$

where $p$ runs through all primes $p \leq X$ and

$$
A_{\mathcal{E}}(p):=\frac{1}{p} \sum_{t=0}^{p-1} a_{\mathcal{E}_{t}}(p)
$$

where $a_{\mathcal{E}_{t}}(p)=p+1-\# \mathcal{E}_{t}\left(\mathbb{F}_{p}\right)$.

## Previous work

We follow methods previously used by Bettin, David, and Delaunay.

## Previous work

We follow methods previously used by Bettin, David, and Delaunay. They computed the rank on elliptic surfaces
$\star$ of the form

$$
y^{2}=x^{3}+a_{2}(T) x^{2}+a_{4}(T) x+a_{6}(T)
$$

with $\operatorname{deg} a_{i} \leq 2$ and $a_{i} \in \mathbb{Z}[T]$,

## Previous work

We follow methods previously used by Bettin, David, and Delaunay. They computed the rank on elliptic surfaces
$\star$ of the form

$$
y^{2}=x^{3}+a_{2}(T) x^{2}+a_{4}(T) x+a_{6}(T)
$$

with $\operatorname{deg} a_{i} \leq 2$ and $a_{i} \in \mathbb{Z}[T]$,
$\star$ with no multiplicative reduction except possibly at infinity.

## Problems we considered

Elliptic surfaces with multiplicative reduction at finite places

- Generic rank


## Problems we considered

Elliptic surfaces with multiplicative reduction at finite places

- Generic rank
- Mordell-Weil group


## Problems we considered

Elliptic surfaces with multiplicative reduction at finite places

- Generic rank
- Mordell-Weil group
- Fibres with rank higher than generic rank


## Problems we considered

Elliptic surfaces with multiplicative reduction at finite places

- Generic rank
- Mordell-Weil group
- Fibres with rank higher than generic rank
- Density of rational points


## More on Nagao's conjecture

## Nagao's Conjecture

Assume $\mathcal{E}$ is not constant. Then the generic rank is

$$
\lim _{X \rightarrow \infty} \frac{1}{X} \sum_{p \leq X} \frac{-\log p}{p} \sum_{t=0}^{p-1} a_{\mathcal{E}(t)(p)}
$$

where $a_{\mathcal{E}(t)(p)}$ is the trace of Frobenius at $p$ of the specialisation at $t$.

## More on Nagao's conjecture

## Nagao's Conjecture

Assume $\mathcal{E}$ is not constant. Then the generic rank is

$$
\lim _{X \rightarrow \infty} \frac{1}{X} \sum_{p \leq X} \frac{-\log p}{p} \sum_{t=0}^{p-1} a_{\mathcal{E}(t)(p)}
$$

where $a_{\mathcal{E}(t)(p)}$ is the trace of Frobenius at $p$ of the specialisation at $t$.
This is true in the case of rational elliptic surfaces, due to Rosen and Silverman.

## An Example of What we Found

## Proposition (BBDKPP)

Let $k \in \mathbb{Q}^{\times}$and consider the family of elliptic surfaces

$$
\mathcal{E}_{k}: y^{2}=x^{3}+T^{2} x+k T^{2}
$$

## An Example of What we Found

## Proposition (BBDKPP)

Let $k \in \mathbb{Q}^{\times}$and consider the family of elliptic surfaces

$$
\mathcal{E}_{k}: y^{2}=x^{3}+T^{2} x+k T^{2}
$$

From Nagao's conjecture, we find

$$
\operatorname{rank} \mathcal{E}(\mathbb{Q}(T)) \leq 1
$$

with equality if and only if $k \in \pm\left(\mathbb{Q}^{\times}\right)^{2}$.

## An Example of What we Found

## Proposition (BBDKPP)

Let $k \in \mathbb{Q}^{\times}$and consider the family of elliptic surfaces

$$
\mathcal{E}_{k}: y^{2}=x^{3}+T^{2} x+k T^{2}
$$

From Nagao's conjecture, we find

$$
\operatorname{rank} \mathcal{E}(\mathbb{Q}(T)) \leq 1
$$

with equality if and only if $k \in \pm\left(\mathbb{Q}^{\times}\right)^{2}$. Moreover, the generating section is

$$
\begin{aligned}
(0, \sqrt{k} T) & \text { if } k \text { is a square; } \\
\left(-k, \sqrt{(-k)^{3}}\right) & \text { if }-k \text { is a square. }
\end{aligned}
$$

## Generic rank over $\overline{\mathbb{Q}}(T)$

## Shioda-Tate Formula

$$
\operatorname{rank} \mathcal{E}(\overline{\mathbb{Q}}(T))=\operatorname{rank} N S(\mathcal{E})-2-\sum_{v}\left(m_{v}-1\right)
$$

## Generic Rank over $\overline{\mathbb{Q}}(T)$

## Shioda-Tate Formula

$$
\operatorname{rank} \mathcal{E}(\overline{\mathbb{Q}}(T))=\operatorname{rank} N S(\mathcal{E})-2-\sum_{v}\left(m_{v}-1\right)
$$

## IN OUR CASE

Let $\mathcal{E}_{k}: y^{2}=x^{3}+T^{2} x+k T^{2}$. Then $\Delta\left(\mathcal{E}_{k}\right)=-16 T^{4}\left(4 T^{2}+27 k^{2}\right)$,
$j\left(\mathcal{E}_{k}\right)=1728 \frac{4 T^{2}}{4 T^{2}+27 k^{2}}$.

## Generic rank over $\overline{\mathbb{Q}}(T)$

## Shioda-Tate Formula

$$
\operatorname{rank} \mathcal{E}(\overline{\mathbb{Q}}(T))=\operatorname{rank} N S(\mathcal{E})-2-\sum_{v}\left(m_{v}-1\right)
$$

## IN OUR CASE

Let $\mathcal{E}_{k}: y^{2}=x^{3}+T^{2} x+k T^{2}$. Then $\Delta\left(\mathcal{E}_{k}\right)=-16 T^{4}\left(4 T^{2}+27 k^{2}\right)$,
$j\left(\mathcal{E}_{k}\right)=1728 \frac{4 T^{2}}{4 T^{2}+27 k^{2}}$.

- At $T$, we have type $I V\left(m_{v}=3\right)$;
- At the linear factors of $\left(4 T^{2}+27 k^{2}\right)$, we have type $I_{1}\left(m_{v}=1\right)$;
- At $\infty$, we have type $I_{0}^{*}\left(m_{v}=5\right)$.


## Generic rank over $\overline{\mathbb{Q}}(T)$

## Shioda-Tate Formula

$$
\operatorname{rank} \mathcal{E}(\overline{\mathbb{Q}}(T))=\operatorname{rank} N S(\mathcal{E})-2-\sum_{v}\left(m_{v}-1\right)
$$

## IN OUR CASE

Let $\mathcal{E}_{k}: y^{2}=x^{3}+T^{2} x+k T^{2}$. Then $\Delta\left(\mathcal{E}_{k}\right)=-16 T^{4}\left(4 T^{2}+27 k^{2}\right)$,
$j\left(\mathcal{E}_{k}\right)=1728 \frac{4 T^{2}}{4 T^{2}+27 k^{2}}$.

- At $T$, we have type $I V\left(m_{v}=3\right)$;
- At the linear factors of $\left(4 T^{2}+27 k^{2}\right)$, we have type $I_{1}\left(m_{v}=1\right)$;
- At $\infty$, we have type $I_{0}^{*}\left(m_{v}=5\right)$.

So $\operatorname{rank} \mathcal{E}_{k}(\overline{\mathbb{Q}}(T))=10-2-(3-1)-2(1-1)-(5-1)=2$.

## CLASSIFICATION WHEN $a_{2}=0$

## Theorem (BBDKPP)

Consider the non-isotrivial elliptic surface

$$
\mathcal{E}: y^{2}=x^{3}+a_{4}(T) x+a_{6}(T)
$$

with $\operatorname{deg} a_{i} \leq 2$ such that there are exactly two fibres of multiplicative reduction over $\overline{\mathbb{Q}}$.

## CLASSIFICATION WHEN $a_{2}=0$

## Theorem (BBDKPP)

Consider the non-isotrivial elliptic surface

$$
\mathcal{E}: y^{2}=x^{3}+a_{4}(T) x+a_{6}(T)
$$

with $\operatorname{deg} a_{i} \leq 2$ such that there are exactly two fibres of multiplicative reduction over $\overline{\mathbb{Q}}$. Then $\mathcal{E}$ belongs to one of the following families:

- $y^{2}=x^{3}+k x+T$ with $k \in \mathbb{Q}^{\times}$;
- $y^{2}=x^{3}+(a T+b) x+\left(a T^{2}+b T\right)$ where $a \neq 0$ and $b \neq a^{2} / 27$;
- $y^{2}=x^{3}+P(T) x+k P(T)$ for some quadratic polynomial $P$ and $k \in \mathbb{Q}^{\times}$such that $4 P(T)+27 k^{2}$ is nonsquare in $\overline{\mathbb{Q}}[T]$.


## Isotrivial Elliptic surface

## ExAMPLE

The isotrivial elliptic surface

$$
\mathcal{E}: y^{2}=x^{3}+T
$$

has $\operatorname{rank}(\mathcal{E}(\mathbb{Q}(T)))=0$.
However, it has infinite subfamilies of positive rank. In particular, the subfamily of elliptic curves (given by Nagao)

$$
\mathcal{E}_{s}: y^{2}=x^{3}+\left(s^{2}-m^{3}\right)
$$

has generic rank 1 for any fixed $m \in \mathbb{Z} \backslash 0$.

## Isotrivial Elliptic surface

## ExAMPLE

The isotrivial elliptic surface

$$
\mathcal{E}: y^{2}=x^{3}+T
$$

has $\operatorname{rank}(\mathcal{E}(\mathbb{Q}(T)))=0$.
However, it has infinite subfamilies of positive rank. In particular, the subfamily of elliptic curves (given by Nagao)

$$
\mathcal{E}_{s}: y^{2}=x^{3}+\left(s^{2}-m^{3}\right)
$$

has generic rank 1 for any fixed $m \in \mathbb{Z} \backslash 0$.

## Root numbers and examples

## Root numbers and examples

## Conjecture (BBDKPP)

The elliptic surface $\mathcal{E}: y^{2}=x^{3}+15\left(27 T^{6}+1\right)$ has positive generic rank.

## Root numbers and examples

## Conjecture (BBDKPP)

The elliptic surface $\mathcal{E}: y^{2}=x^{3}+15\left(27 T^{6}+1\right)$ has positive generic rank.

- Family of constant root number $\left(W\left(\mathcal{E}_{t}\right)=-1\right)$ for all $\left.t \in \mathbb{Q}\right)$ found by Julie.


## Root numbers and examples

## Conjecture (BBDKPP)

The elliptic surface $\mathcal{E}: y^{2}=x^{3}+15\left(27 T^{6}+1\right)$ has positive generic rank.

- Family of constant root number $\left(W\left(\mathcal{E}_{t}\right)=-1\right)$ for all $\left.t \in \mathbb{Q}\right)$ found by Julie.
- Our method doesn't work since $\operatorname{deg} a_{i}$ too large. :-(


## Open questions and possible future work

- Use known families with constant root number to guess interesting subfamilies of elliptic curves with high rank?
- Generic rank when $\operatorname{deg} a_{i}$ is high


## Thank you!

## References

(R. S. Arms, A. Lozano-Robledo, and S. J. Miller. Constructing one-parameter families of elliptic curves with moderate rank. J. Number Theory, 123(2): 388 - 402, 2007.

- S. Bettin, C. David, and C. Delaunay. Families of elliptic curves with non-zero average root number. arXiv:1612.03095, 122016.

回 B. Conrad, K. Conrad, and H. Helfgott. Root numbers and ranks in positive characteristic. Advances in Mathematics 198(2): 684 - 731, 2005.

嗇 J. Desjardins. Density of rational points on rational elliptic surfaces. arXiv:1610.07440, 2016.

## References (CONT'D)

K. Nagao. $\mathbb{Q}(T)$-rank of elliptic curves and certain limit coming from the local points, Manuscripta Math. 92: 13 - 32, 1997.
R. Oguiso and T. Shioda. The Mordell-Weil lattice of a rational elliptic surface. Rikkyo Daigaku sugaku zasshi 40(1): 83 - 99, 1991.
(R. M. Rosen and J. Silverman. On the rank of an elliptic surface. Invent. Math. 133(1): 43 - 67, 1998.
J. Silverman. The Arithmetic of Elliptic Curves, GTM 106. Springer-Verlag, New York, 1994.

