GENERIC RANK OF A FAMILY OF ELLIPTIC CURVES

Francesca Bianchi, Matthew Bisatt, Julie Desjardins, Daniel Kohen, Carlo Pagano, Soohyun Park

ICTP Trieste, 4th September 2017

One reason: We didn't want to do the exercises.

DEFINITIONS

DEFINITION

A family of elliptic curves ${\mathcal E}$ is given by the equation

$$\mathcal{E}: y^2 + a_1(T)xy + a_3(T)y = x^3 + a_2(T)x^2 + a_4(T)x + a_6(T)$$

with $a_i(T) \in \mathbb{Z}[T]$.

DEFINITION

A family of elliptic curves \mathcal{E} is given by the equation

$$\mathcal{E}: y^2 + a_1(T)xy + a_3(T)y = x^3 + a_2(T)x^2 + a_4(T)x + a_6(T)$$

with $a_i(T) \in \mathbb{Z}[T]$.

We denote by \mathcal{E}_t the curve given by this equation when T is replaced by $t \in \mathbb{Q}$. We call \mathcal{E}_t the <u>fibre</u> at t and is an elliptic curve except for finitely many exceptions.

DEFINITION

A family of elliptic curves \mathcal{E} is given by the equation

$$\mathcal{E}: y^2 + a_1(T)xy + a_3(T)y = x^3 + a_2(T)x^2 + a_4(T)x + a_6(T)$$

with $a_i(T) \in \mathbb{Z}[T]$.

We denote by \mathcal{E}_t the curve given by this equation when T is replaced by $t \in \mathbb{Q}$. We call \mathcal{E}_t the <u>fibre</u> at t and is an elliptic curve except for finitely many exceptions.

• Will assume $a_1 = a_3 = 0$ with $\deg a_i \le 2$ for i even.

DEFINITIONS (CONT'D)

DEFINITION

The generic rank of \mathcal{E} (denoted by $\operatorname{rk}(\mathcal{E}(\mathbb{Q}(T)))$) is the rank of \mathcal{E} as an elliptic curve over $\mathbb{Q}(T)$.

DEFINITIONS (CONT'D)

DEFINITION

The generic rank of \mathcal{E} (denoted by $\operatorname{rk}(\mathcal{E}(\mathbb{Q}(T)))$) is the rank of \mathcal{E} as an elliptic curve over $\mathbb{Q}(T)$.

THEOREM (SILVERMAN)

We have $\operatorname{rk}(\mathcal{E}_t) \geq \operatorname{rk}(\mathcal{E}(\mathbb{Q}(T)))$ for all but finitely many $t \in \mathbb{Q}$.

• Over an algebraically closed field k, one can find the generic rank explicitly from the reduction type (Oguiso-Shioda).

• Over an algebraically closed field k, one can find the generic rank explicitly from the reduction type (Oguiso-Shioda).

Q1: What if k is not algebraically closed (e.g. $k = \mathbb{Q}$)?

• Over an algebraically closed field k, one can find the generic rank explicitly from the reduction type (Oguiso-Shioda).

Q1: What if k is not algebraically closed (e.g. $k = \mathbb{Q}$)?

• Q2: Is there an elliptic surface \mathcal{E} over \mathbb{Q} with generic rank 0 such that every fibre \mathcal{E}_t has positive rank? (Cassels)

• Over an algebraically closed field k, one can find the generic rank explicitly from the reduction type (Oguiso-Shioda).

Q1: What if k is not algebraically closed (e.g. $k = \mathbb{Q}$)?

- Q2: Is there an elliptic surface \mathcal{E} over \mathbb{Q} with generic rank 0 such that every fibre \mathcal{E}_t has positive rank? (Cassels)
- When K is a number field, it is known that

$$#\{t \in \mathbb{P}^1 \mid rg(\mathcal{E}_t) \neq 0\} = \infty \Leftrightarrow \mathcal{E}(K) \text{ is dense}$$

Over an algebraically closed field k, one can find the generic rank explicitly from the reduction type (Oguiso-Shioda).

Q1: What if k is not algebraically closed (e.g. $k = \mathbb{Q}$)?

- Q2: Is there an elliptic surface \mathcal{E} over \mathbb{Q} with generic rank 0 such that every fibre \mathcal{E}_t has positive rank? (Cassels)
- When K is a number field, it is known that

$$#\{t \in \mathbb{P}^1 \mid rg(\mathcal{E}_t) \neq 0\} = \infty \Leftrightarrow \mathcal{E}(K) \text{ is dense}$$

- Q3: Suppose there is no elliptic curve E over $\mathbb Q$ such that $\mathcal E\cong E\times \mathbb P^1.$
- Is $\mathcal{E}(\mathbb{Q})$ Zariski dense?

CONJECTURE (NAGAO)

The rank of ${\mathcal E}$ over ${\mathbb Q}(T)$ is

$$r_{\mathcal{E}} = \lim_{X \to \infty} \frac{1}{X} \sum_{p \le X} -A_{\mathcal{E}}(p) \log p,$$

where p runs through all primes $p \leq X$ and

$$A_{\mathcal{E}}(p) := \frac{1}{p} \sum_{t=0}^{p-1} a_{\mathcal{E}_t}(p),$$

where $a_{\mathcal{E}_t}(p) = p + 1 - \#\mathcal{E}_t(\mathbb{F}_p)$.

PREVIOUS WORK

We follow methods previously used by Bettin, David, and Delaunay.

PREVIOUS WORK

We follow methods previously used by Bettin, David, and Delaunay. They computed the rank on elliptic surfaces

 \star of the form

$$y^{2} = x^{3} + a_{2}(T)x^{2} + a_{4}(T)x + a_{6}(T)$$

with deg $a_i \leq 2$ and $a_i \in \mathbb{Z}[T]$,

PREVIOUS WORK

We follow methods previously used by Bettin, David, and Delaunay. They computed the rank on elliptic surfaces

 \star of the form

$$y^{2} = x^{3} + a_{2}(T)x^{2} + a_{4}(T)x + a_{6}(T)$$

with $\deg a_i \leq 2$ and $a_i \in \mathbb{Z}[T]$,

 \star with no multiplicative reduction except possibly at infinity.

PROBLEMS WE CONSIDERED

Elliptic surfaces with multiplicative reduction at finite places

• Generic rank

PROBLEMS WE CONSIDERED

Elliptic surfaces with multiplicative reduction at finite places

- Generic rank
- Mordell-Weil group

PROBLEMS WE CONSIDERED

Elliptic surfaces with multiplicative reduction at finite places

- Generic rank
- Mordell-Weil group
- Fibres with rank higher than generic rank

Elliptic surfaces with multiplicative reduction at finite places

- Generic rank
- Mordell-Weil group
- Fibres with rank higher than generic rank
- Density of rational points

NAGAO'S CONJECTURE

Assume $\ensuremath{\mathcal{E}}$ is not constant. Then the generic rank is

$$\lim_{X \to \infty} \frac{1}{X} \sum_{p \le X} \frac{-\log p}{p} \sum_{t=0}^{p-1} a_{\mathcal{E}(t)(p)},$$

where $a_{\mathcal{E}(t)(p)}$ is the trace of Frobenius at p of the specialisation at t.

NAGAO'S CONJECTURE

Assume $\ensuremath{\mathcal{E}}$ is not constant. Then the generic rank is

$$\lim_{X \to \infty} \frac{1}{X} \sum_{p \le X} \frac{-\log p}{p} \sum_{t=0}^{p-1} a_{\mathcal{E}(t)(p)},$$

where $a_{\mathcal{E}(t)(p)}$ is the trace of Frobenius at p of the specialisation at t.

This is true in the case of rational elliptic surfaces, due to Rosen and Silverman.

PROPOSITION (BBDKPP)

Let $k \in \mathbb{Q}^{\times}$ and consider the family of elliptic surfaces

$$\mathcal{E}_k: y^2 = x^3 + T^2 x + kT^2.$$

PROPOSITION (BBDKPP)

Let $k \in \mathbb{Q}^{\times}$ and consider the family of elliptic surfaces

$$\mathcal{E}_k: y^2 = x^3 + T^2 x + kT^2.$$

From Nagao's conjecture, we find

 $\operatorname{rank} \mathcal{E}(\mathbb{Q}(T)) \le 1,$

with equality if and only if $k \in \pm (\mathbb{Q}^{\times})^2$.

PROPOSITION (BBDKPP)

Let $k \in \mathbb{Q}^{\times}$ and consider the family of elliptic surfaces

$$\mathcal{E}_k: y^2 = x^3 + T^2 x + kT^2.$$

From Nagao's conjecture, we find

 $\operatorname{rank} \mathcal{E}(\mathbb{Q}(T)) \leq 1,$

with equality if and only if $k \in \pm (\mathbb{Q}^{\times})^2$. Moreover, the generating section is

$$(0,\sqrt{k}T)$$
 if k is a square;
 $(-k,\sqrt{(-k)^3})$ if $-k$ is a square.

$$\operatorname{rank} \mathcal{E}(\overline{\mathbb{Q}}(T)) = \operatorname{rank} NS(\mathcal{E}) - 2 - \sum_{v} (m_v - 1)$$

$$\operatorname{rank} \mathcal{E}(\overline{\mathbb{Q}}(T)) = \operatorname{rank} NS(\mathcal{E}) - 2 - \sum_{v} (m_v - 1)$$

IN OUR CASE

Let
$$\mathcal{E}_k : y^2 = x^3 + T^2 x + kT^2$$
. Then $\Delta(\mathcal{E}_k) = -16T^4(4T^2 + 27k^2)$,
 $j(\mathcal{E}_k) = 1728 \frac{4T^2}{4T^2 + 27k^2}$.

$$\operatorname{rank} \mathcal{E}(\overline{\mathbb{Q}}(T)) = \operatorname{rank} NS(\mathcal{E}) - 2 - \sum_{v} (m_v - 1)$$

IN OUR CASE

Let
$$\mathcal{E}_k : y^2 = x^3 + T^2 x + kT^2$$
. Then $\Delta(\mathcal{E}_k) = -16T^4(4T^2 + 27k^2)$,
 $j(\mathcal{E}_k) = 1728 \frac{4T^2}{4T^2 + 27k^2}$.
• At T , we have type IV $(m_v = 3)$;
• At the linear factors of $(4T^2 + 27k^2)$, we have type I_1 $(m_v = 1)$;
• At ∞ , we have type I_0^* $(m_v = 5)$.

$$\operatorname{rank} \mathcal{E}(\overline{\mathbb{Q}}(T)) = \operatorname{rank} NS(\mathcal{E}) - 2 - \sum_{v} (m_v - 1)$$

IN OUR CASE

Let $\mathcal{E}_k : y^2 = x^3 + T^2 x + kT^2$. Then $\Delta(\mathcal{E}_k) = -16T^4(4T^2 + 27k^2)$, $j(\mathcal{E}_k) = 1728 \frac{4T^2}{4T^2 + 27k^2}$. • At *T*, we have type *IV* ($m_v = 3$); • At the linear factors of $(4T^2 + 27k^2)$, we have type I_1 ($m_v = 1$); • At ∞ , we have type I_0^* ($m_v = 5$). So rank $\mathcal{E}_k(\overline{\mathbb{Q}}(T)) = 10 - 2 - (3 - 1) - 2(1 - 1) - (5 - 1) = 2$.

THEOREM (BBDKPP)

Consider the non-isotrivial elliptic surface

$$\mathcal{E}: y^2 = x^3 + a_4(T)x + a_6(T),$$

with $\deg a_i \leq 2$ such that there are exactly two fibres of multiplicative reduction over $\overline{\mathbb{Q}}$.

THEOREM (BBDKPP)

Consider the non-isotrivial elliptic surface

$$\mathcal{E}: y^2 = x^3 + a_4(T)x + a_6(T),$$

with $\deg a_i \leq 2$ such that there are exactly two fibres of multiplicative reduction over $\overline{\mathbb{Q}}$. Then \mathcal{E} belongs to one of the following families:

•
$$y^2 = x^3 + kx + T$$
 with $k \in \mathbb{Q}^{\times}$;
• $y^2 = x^3 + (aT + b)x + (aT^2 + bT)$ where $a \neq 0$ and $b \neq a^2/27$;
• $y^2 = x^3 + P(T)x + kP(T)$ for some quadratic polynomial P and $k \in \mathbb{Q}^{\times}$ such that $4P(T) + 27k^2$ is nonsquare in $\overline{\mathbb{Q}}[T]$.

EXAMPLE

The isotrivial elliptic surface

$$\mathcal{E}: y^2 = x^3 + T$$

has $\operatorname{rank}(\mathcal{E}(\mathbb{Q}(T))) = 0.$

However, it has infinite subfamilies of positive rank. In particular, the subfamily of elliptic curves (given by Nagao)

$$\mathcal{E}_s: y^2 = x^3 + (s^2 - m^3)$$

has generic rank 1 for any fixed $m \in \mathbb{Z} \setminus 0$.

EXAMPLE

The isotrivial elliptic surface

$$\mathcal{E}: y^2 = x^3 + T$$

has $\operatorname{rank}(\mathcal{E}(\mathbb{Q}(T))) = 0.$

However, it has infinite subfamilies of positive rank. In particular, the subfamily of elliptic curves (given by Nagao)

$$\mathcal{E}_s: y^2 = x^3 + (s^2 - m^3)$$

has generic rank 1 for any fixed $m \in \mathbb{Z} \setminus 0$.

CONJECTURE (BBDKPP)

The elliptic surface $\mathcal{E}: y^2 = x^3 + 15(27T^6 + 1)$ has positive generic rank.

CONJECTURE (BBDKPP)

The elliptic surface $\mathcal{E}: y^2 = x^3 + 15(27T^6 + 1)$ has positive generic rank.

• Family of constant root number $(W(\mathcal{E}_t) = -1)$ for all $t \in \mathbb{Q}$) found by Julie.

CONJECTURE (BBDKPP)

The elliptic surface $\mathcal{E}: y^2 = x^3 + 15(27T^6 + 1)$ has positive generic rank.

- Family of constant root number $(W(\mathcal{E}_t) = -1)$ for all $t \in \mathbb{Q}$) found by Julie.
- Our method doesn't work since $\deg a_i$ too large. :-(

OPEN QUESTIONS AND POSSIBLE FUTURE WORK

- Use known families with constant root number to guess interesting subfamilies of elliptic curves with high rank?
- Generic rank when $\deg a_i$ is high

Thank you!

References

- S. Arms, A. Lozano-Robledo, and S. J. Miller. Constructing one-parameter families of elliptic curves with moderate rank. J. Number Theory, 123(2): 388 – 402, 2007.
- S. Bettin, C. David, and C. Delaunay. Families of elliptic curves with non-zero average root number. arXiv:1612.03095, 12 2016.
- B. Conrad, K. Conrad, and H. Helfgott. Root numbers and ranks in positive characteristic. Advances in Mathematics 198(2): 684 – 731, 2005.
- J. Desjardins. Density of rational points on rational elliptic surfaces. arXiv:1610.07440, 2016.

REFERENCES (CONT'D)

- K. Nagao. $\mathbb{Q}(T)$ -rank of elliptic curves and certain limit coming from the local points, Manuscripta Math. 92: 13 32, 1997.
- K. Oguiso and T. Shioda. The Mordell-Weil lattice of a rational elliptic surface. Rikkyo Daigaku sugaku zasshi 40(1): 83 – 99, 1991.
- M. Rosen and J. Silverman. On the rank of an elliptic surface. Invent. Math. 133(1): 43 – 67, 1998.
- J. Silverman. The Arithmetic of Elliptic Curves, GTM 106. Springer-Verlag, New York, 1994.